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Extensional viscosity and thinning of a fiber suspension thread
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The extensional effective viscosity, ηe, of a suspension of solid cylindrical fibers in a
Newtonian liquid is measured from the gravitational stretching of a quasisteady jet. We
vary the length-to-diameter aspect ratio of the fibers, a, from ∼10 to ∼102, and the particle
volume fraction, φ, in the range aφ ∼ 0.1–2. For low values of φ, the extensional viscosity
is found to agree with Batchelor’s model for the dilute regime, which assumes noninteract-
ing fibers aligned with the stretching direction, but for higher concentrations, ηe is found
to increase much more strongly with increasing φ than predicted by available models
assuming purely hydrodynamics interactions between the fibers. Additional experiments
are performed on the breakup of an unstable capillary bridge for a = 11. Although the
variability in the bridge shape and the deviation from a viscous Newtonian dynamics in the
late stage of the breakup increase significantly with increasing φ, it is found that the mean
total duration of the breakup is in good agreement with a Newtonian effective dynamics
limited by the extensional viscosity, ηe.
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I. INTRODUCTION

The formation, deformation, and fragmentation of elongated structures, such as jets or threads,
involve essentially extensional flows, for which the rheological response of the deformed medium
may differ strongly from its response to a shear flow, in particular when the medium has a
microstructure depending on the type of deformation. A typical example is that of a suspension
of elongated particles, such as solid fibers, which, provided they are diluted enough, align with the
straining direction in a purely extensional flow, while they tumble in a pure shear.

For fibers that are rigid, non-Brownian, suspended in a Newtonian liquid having a viscosity η0,
and sufficiently small to neglect inertial effects, the bulk response of the suspension is pseudo-
Newtonian in all flows, in the sense that all the bulk effective stresses (except the undetermined
bulk pressure) must be proportional to both η0 and the actual deformation rate. Moreover, if the
orientation of the particles has statistically the same symmetry as the bulk flow, the deviatoric part
of the bulk stresses must have the same tensorial form as for a Newtonian liquid. Importantly, this
condition is verified for a liquid thread containing fibers with an initially random orientation or for
a jet extruded from a cylindrical nozzle that are both stretched parallel to their own axis, since the
fibers are expected to evolve from the initial isotropic or partly aligned configuration to the final
aligned state while preserving the axial symmetry of the flow. In this case, the extensional bulk
rheology is fully defined by a single coefficient, the extensional effective viscosity ηe ≡ τi j/2Ei j ,
where E and τ are the strain rate tensor and the deviatoric part of the viscous stress tensor,
respectively. Note that from this definition, ηe is equal to the shear viscosity, ηs, in the case of a
Newtonian liquid.
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In the absence of contact between the fibers, ηe can only result from hydrodynamic perturbations
of the mean flow by the fibers, and the fibers can only interact via hydrodynamic forces. In the
case of rigid particles, the effective viscosity depends only on the particle volume fraction, φ, the
length-to-diameter aspect ratio of the fibers, a = l/d , and the degree of alignment of the fibers. A
series of expressions for ηe have been derived by Batchelor [1] and Shaqfeh and Fredrickson [2] for
different degrees of fiber dilution in a uniaxial straining flow (E = −ε̇/2exex − ε̇/2eyey + ε̇ezez).
These authors have considered slender fibers (a � 1), neglected inertia and frictional contact
between the fibers, and assumed simplified hydrodynamic interactions between the fibers. Most
models have also considered parallel fibers aligned with the stretching direction (ez). In the dilute
limit (a2φ/ ln a � 1), i. e., when the mean distance between neighboring fibers, ∼d/

√
φ, is larger

than the hydrodynamic range, ∼l/
√

ln a, the interaction between the fibers can be neglected and
the specific viscosity, ηe/η0 − 1, is proportional to φ. By summing the additional stresses due to
force-free, isolated fibers (i. e., stresslets; see [3–5]), Batchelor [1] obtained

ηe

η0
− 1 = 2εQ(ε)

9
a2φ, with ε = 1

ln(2a)
, (1)

where the shape factor Q(ε) = 1+0.64ε
1−3ε/2 + 1.659ε2 + O(ε3) is of order 1 in practice. The alignment of

the particles with the direction of the largest strain maximizes the dissipation. Due to the linearity of
the stresses, Eq. (1) can be extended to any distribution of particle orientation. For isotropic particles,
the specific viscosity is five times as small as that given by Eq. (1). Experiments with a jet stretched
with a rotating cylinder [6,7] or by gravity [8] have verified the validity of Eq. (1) for dilute suspen-
sions of thin elongated fibers (d � 10 μm, a ∼ 50–1200, and φ ∼ 5 × 10−4 to 0.01). Modifications
of Eq. (1) have also been proposed to account for the weak hydrodynamic interactions between the
fibers in the so-called semidilute regime where the mean distance between the fibers is smaller than
the hydrodynamic range while remaining larger than the fiber diameter (d � d/

√
φ � l/

√
ln a).

For semidilute suspensions of aligned fibers, Batchelor [1] and Shaqfeh and Fredrickson [2] have
obtained, respectively,

ηe

η0
− 1 = 4

9

1

ln π/φ
a2φ, (2a)

ηe

η0
− 1 = 4

9

1

ln[ln(1/φ)/φ] + 0.1585
a2φ, (2b)

from a cell model approximation with a mean field cell size d/
√

φ and a multiple scattering model
of the hydrodynamic interactions, respectively.

Beyond these purely hydrodynamic regimes, a different rheological behavior may be expected
as φ is increased since solid contacts between the particles must become important at some point.
Above solid fractions of order 1/a [9–11], solid contacts may prevent the fibers from aligning, and
even for a given orientation distribution of the particles, an increase in solid contacts between the
particles is expected as φ becomes of order 1 or as a is sufficiently increased. This should definitely
affect the particle flow and hence the overall dissipation. This limit has been documented recently
for a pure shear flow [12], but data are not available for straining flow.

These questions are precisely addressed in the present contribution by measuring the extensional
effective viscosity of a suspension of solid cylindrical fibers in a Newtonian liquid from the
gravitational stretching of a quasisteady jet. These experiments are complemented by additional
observations on the breakup of an unstable capillary bridge using the same fiber suspensions. The
experimental methods are described in Sec. II, and the results in Sec. III. Conclusions are drawn in
Sec. IV.
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FIG. 1. Setups and fibers. (a) Constant flow rate jet stretched by gravity used for the extensional rheometry.
(b) Shear cell used for the shear rheometry. (c) Capillary bridge breakup configuration. (d) Cylindrical
polyamide fibers used for the experiments: (i) d = 28.9 μm, a = 10.8. (ii) d = 28.3 μm, a = 27.6. (iii)
d = 28.1 μm, a = 106. (iv) d = 48.1 μm, a = 11.5.

II. MATERIALS AND EXPERIMENTAL METHODS

We use cylindrical polyamide fibers manufactured for flocking applications (provided by the
Pinfloc company). Their diameter, d , is varied between �28 and �48 μm, which is much smaller
than the diameter of the liquid thread (h ∼ 1–10 mm) while their length-to-diameter ratio, a = l/d ,
is varied between �10 and �100; see Fig. 1(d) and Table I, which also provides combinations of the
relevant parameters. The fiber ends are slightly tapered because of the cutting process by which they
are manufactured. They are suspended in a Newtonian liquid having a density matching their own
density (ρ = 1140 kg/m3) and which wets them well. The liquid is an aqueous solution of PEGPG
[3.9 kg/mol poly(ethylene glycol-ran-propylene glycol)-monobutylether by Sigma-Aldrich] or of
UCON oil (polyalkylene glycol-composed lubricant UCON 75-H 90 000 by Dow) with ZnCl2 (zinc
chloride; Sigma-Aldrich). Its viscosity, η0, is varied between 0.13 and 3.1 Pa s in order to obtain an
effective viscosity of the suspension in the range where the measurements on the jet are accurate (see
below) and those on the capillary bridge are free of inertial effects (see below). The particle volume
fraction, φ, is varied between ∼10−3 and 10−2 and a value close to the largest volume fraction at
which the suspension could be processed without noticeable aeration or self-filtration, i. e., 0.24,
0.07, and 0.02 for l/d = 11, 28, and 106, respectively. The suspensions are prepared at the desired
volume fraction and poured in a plastic syringe which is connected to the jet or bridge setups. Note
that for the highest volume fractions (�0.2), clear nonuniformities in the dispersion of the fibers are
observed. Apparent clusters of fibers, with a typical dimension of a few fiber lengths, are found to
form and to vanish dynamically as the suspension is gently mixed.

TABLE I. Characteristics of the fibers (the ± symbol indicates the standard deviation over 30 fibers) and
concentration ranges of the suspensions.

d (μm) a = l/d φ/100 aφ a2φ

(i) 28.9 ± 1.2 10.8 ± 1.8 1 – 24 0.108 – 2.59 1.16 – 27.9
(ii) 28.3 ± 0.9 27.6 ± 0.9 0.3 – 7 0.083 – 1.93 2.28 – 53.3
(iii) 28.1 ± 1.3 106 ± 5.5 0.08 – 2 0.085 – 2.12 8.96 – 224
(iv) 48.1 ± 4.2 11.5 ± 1.1 5 0.57 6.61
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FIG. 2. (a) Typical jets observed for a ≈ 11 and d ≈ 28 μm, φ = 0.01 (left, η0 = 3.1 Pa s) and φ = 0.20
(right, η0 = 0.66 Pa s), and u0 = 1.36 cm/s. (b) Mean velocity versus distance to the nozzle for different
volume fractions [same fibers as in (a), η0 = 3.1 Pa s for φ < 0.10 and η0 = 0.66 Pa s for φ � 0.10]. The solid
line shows the velocity for a Newtonian liquid, Eq. (4), and z0 determines the velocity at the nozzle u0, i. e.,
u(z0) = u0. The shaded envelops indicate the standard deviation of u0h2

0/Uh2. Inset: Same data in linear scales.
(c) Relative effective viscosity of the suspensions as measured from the jet velocity profile (ηe/η0) and with
the shear cell (ηs/η0).

The jet setup is sketched in Fig. 1(a). It consists in forming a quasisteady jet by extruding a
fiber suspension through a vertical nozzle with a constant flow rate and observing the gravitational
thinning of the jet. The suspension is extruded through a cylindrical nozzle having an inner diameter
h0 = 11.6 mm (and a length �30 mm). A constant flow rate with mean velocity at the nozzle
u0 ∼ 1 cm/s is imposed with the help of a rigid piston and a high-precision translation stage. The
thinning of the jet is imaged from a side view using a camera, see Fig. 2(a), and the thickness profile
h(z) is obtained by detecting the jet contour. The extensional effective viscosity is obtained with
the same procedure as in [13] (also used previously by [8]), by comparing the stretching of the
suspension jet with that expected for a Newtonian liquid. The quasisteady velocity profile of the jet,
u(z), is obtained from the measurement of the thickness profile h(z), by making use of the constant
flow rate assumption, u(z) = u0h2

0/h(z)2, and averaging over a sufficient time (∼10 s � h0/u0).
It has been verified that very close values are obtained by measuring directly the velocity from the
displacement of the surface corrugations of the jet [13]. The reference Newtonian profile is obtained
from the unidimensional, slender-slope approximation of the momentum and mass equations [14],

uuz = g + 3ηe

ρ

(h2uz )z

h2
, h2 = h2

0u0

u
, (3)

which is relevant in the present case of an elongated geometry (hz � 1) and negligible surface
tension (the Weber number ρh0U 2/σ is of order 20). Introducing the visco-gravity velocity scale,
U = (3ηeg/ρ)1/3, which determines whether the fall of the jet is limited by viscous stretching
(u � U ) or is free (u � U ), and the visco-gravity length scale, Z = (9η2

e/ρ
2g)1/3, which represents

the typical distance from the nozzle at which U is reached for a slow extrusion (u0 � U ), these
equations can be combined into [15]

( u

U

)′
= U

u
+

(
(u/U )′

u/U

)′
, (4)

where ′ denotes Z∂z. For a sufficiently long jet (z � Z), Eq. (4) [with u(0) = 0 and u′(∞)/U = 0]
determines a single universal velocity profile u(z), whose scales, U and Z , embed the extensional

044307-4



EXTENSIONAL VISCOSITY AND THINNING OF A FIBER …

effective viscosity of the jet, ηe = ρU 3/3g = ρ
√

gZ3/3. The value of the latter is obtained from
the best fit of the experimental profile with the solution of Eq. (4). In order to obtain accurate
measurements the experiments are performed in the case u0 � U for which most of the viscosity-
limited stretching is observed and care is taken to verify the slenderness criterion (Z � h0).

In addition to the extensional measurements, the shear effective viscosity of the suspensions is
measured with a shear cell sketched in Fig. 1(b) which enables large values of the shear gap and is
calibrated with Newtonian liquids (see details in [13,16]). The shear viscosity is found to be almost
independent of the gap (less than 5% variation when the gap size is increased from 2.5 to 5 mm)
and a slight shear thinning is observed for the largest solid fractions (typically, a 30% decrease over
one decade of shear rate for φ = 0.20 with a = 11). Therefore, we report the average as well as
the extreme values measured over the shear rate decade 1–10 s−1 which corresponds to the typical
deformation rate uz in the jet.

The breakup dynamics is studied with the capillary bridge apparatus sketched in Fig. 1(c).
The setup is identical to that used in [17]. It consists in letting a static pending suspension drop
with a controlled size to merge with a bath of the same suspension and monitoring the thinning
and pinching of the unstable bridge that is transiently formed by the coalescence. The drop is
quasistatically extruded from a stainless steel cylindrical nozzle with an outer diameter of 4.39 mm
until its bottom is located 3.88 mm below the nozzle outlet. The suspension bath is then slowly
raised (at typically 1 μm/s) until the merging is triggered. The pinching dynamics of the bridge
is imaged from a side view with a camera. The contour of the bridge is extracted and the time
evolution of the minimal diameter of the bridge, hmin, is followed from hmin = href ≡ 2.5 mm to the
instant of the breakup, when hmin vanishes. The experiments are conducted with the smallest fibers
(a = 10.8 ± 1.8, d = 28.9 ± 1.2 μm) and for volume fractions, φ, ranging from 0.015 to 0.24. The
suspending liquid viscosity (η0 = 0.13 or 3.05 Pa s; see Table III discussed in Sec. III) is chosen so
as to obtain sufficiently large Ohnesorge numbers (ηe/

√
ρhrefσ � 10, where σ � 38 or 42 mPa/m,

respectively, is the surface tension of the suspending liquid), which ensures that inertia does not
affect the pinching. The typical deformation rates, ḣmin/hmin ∼ 10−1 to 1 s−1, are slightly smaller
than those in the jet (uz ∼ 1 to 10 s−1). The viscous Newtonian reference dynamics is calibrated
with the most viscous suspending liquid in the absence of particles. This ensures that the calibration
is obtained for a surface tension that is within 10% that of the suspensions and a density that is
equal.

For this range of parameters the Sperm number, (128η0ε̇/E )a4/ ln 2a, which determines whether
the magnitude of the viscous stresses is sufficient to bend an isolated fiber [18] (with ε̇ = uz or
ḣmin/hmin the typical deformation rate and E ≈ 3–5 GPa the Young modulus of the fibers), varies
from ∼10−3 to ∼10 (for a ranging from 11 to 103). This is below the critical value for buckling
≈150 [18]. It should be stressed that this criterion is relevant only for isolated fibers that are aligned
with a compressive direction of the flow, i.e., that are close to perpendicular to the thread axis.

III. RESULTS

A. Jets

Figure 2(a) shows the typical jet profiles observed for a suspension of fibers with a = 10.8 ± 1.8
and d = 28.9 ± 1.2 μm for both a dilute (left, φ = 0.01) and a concentrated (right, φ = 0.20)
situation. In both cases, below a certain distance from the nozzle at which unsteady diameter
modulations akin to a Plateau-Rayleigh instability eventually develop, an extended portion is
observed where the jet is quasisteady. Over this portion, which is a few nozzle diameters long, the
jet stretches and thins monotonically with increasing distance from the nozzle and the quasisteady
thickness profile can be extracted. Figure 2(b) presents the stretching of the jet measured for the
same fibers (a = 10.8 ± 1.8, d = 28.9 ± 1.2 μm) and a few representative values of φ between
0.01 and 0.22. All the velocity profiles (obtained using u = u0h2

0/h2; see Sec. II) are found to show
the quadratic law u/U ∝ (z/Z )2 of the viscosity-limited stretching regime (u � U ) and to be well
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TABLE II. Extensional effective viscosities obtained with the jet setup.

a = l/d aeff =
√

〈l3〉
〈ld2〉 d (μm) φ/100 η0 (Pa s) ηe/η0

10.8 11.2 28.9 1 3.10 1.35
2.5 3.10 1.90
5 3.10 2.77

7.5 3.10 3.77
10 0.66 6.1

12.5 0.66 9.1
15 0.60 11.8

17.5 0.66 18.2
20 0.66 36
22 0.66 39

27.6 27.7 28.3 0.3 3.10 1.61
1.3 3.10 3.16
7 0.62 16.9

106 106 28.1 0.08 3.10 2.90
0.4 3.10 6.13
2 0.62 35.5

11.5 11.4 48.1 5 3.10 2.97

fitted by Eq. (4) (solid black line) over a significant range of strain, h2
0/h2 � 10. This suggests that

the suspensions behave as an effective Newtonian liquid and that an extensional effective viscosity,
ηe, can be measured.

The value of ηe relative to the suspending liquid viscosity, η0, is plotted as a function of
the particle volume fraction in Fig. 2(c). It is found to increase strongly and continuously with
increasing φ, reaching typically 40 at φ = 0.22. In order to appreciate the influence of the particle
size, Fig. 2(c) also reports the extensional viscosity measured for φ = 0.05 for particles that have a
similar shape (a ≈ 11) but are almost twice as large (d = 48.1 ± 4.2 μm instead of 28.9 ± 1.2 μm).
Within the experimental uncertainty, the same value of ηe/η0 is obtained (2.97 for d = 48.1 ± 4.2,
vs 2.77 for 28.9 ± 1.2 μm), which suggests that our rheological measurements are not influenced
by finite size effects and probe the bulk rheology of the suspensions.

The extensional viscosity of the suspension obtained with the jet experiment, ηe, can be compared
to the shear effective viscosity, ηs, measured with the shear cell. As shown in Fig. 2(c), ηe remains
larger than ηs over the whole range of φ. More specifically, the increase in ηe is found to be much
larger than in ηs for the smallest volume fractions (φ � 0.08), whereas for higher values of φ the
two viscosities remain almost in the same ratio of approximately 4. This suggests that, as expected
in the dilute limit [9,19], the fibers are more aligned with the straining direction in the jet than in the
shear flow.

The dependence of the extensional effective viscosity on the fiber aspect ratio, a, is studied
by increasing the length of the fibers while keeping their diameter (d ≈ 28 μm;, see Table I)
and the range of aφ (0.1 � aφ � 2; see Table I) almost unchanged. These data are provided
in Table II as a function of both a and φ. Figure 3(a) compares these measurements with the
prediction for the dilute regime, by representing the specific effective viscosity, ηe/η0 − 1, as a
function of the diluteness parameter, εQ(ε)a2φ. For the smallest aspect ratio already discussed
above (a = 10.8 ± 1.8), ηe/η0 − 1 is found to increase close to linearly with φ up to φ ≈ 0.08.
This suggests that particle interactions have a negligible influence over this range of φ. This is also
the case for the more slender fibers (a = 27.6 ± 0.9 and 106 ± 5.5), albeit over the whole range of
volume fraction investigated. In the ηe/η0 − 1 vs εQ(ε)a2φ representation, all these measurements
collapse onto the same line. They also collapse with the data previously obtained experimentally
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(a) (b)

a

FIG. 3. (a) Specific extensional effective viscosity as a function of the diluteness parameter, εQ(ε)a2φ. The
circles represent the values obtained with the jet setup for different aspect ratios but a similar particle diameter
(d ≈ 28 μm). The triangles represent the experimental data by Weinberger [7], Mewis and Metzner [6], Pittman
and Bayram [8], and the numerical data by Mackaplow and Shaqfeh [20] (the value of a is given by the symbol
darkness as indicated in the scale bar). The solid lines show the predictions for the dilute regime with aligned,
Eq. (1), and isotropic fibers (see text in Sec. I). (b) Same viscosity as in (a) normalized by εQ(ε)a2 as a function
of φ. The dash-dotted and dotted lines are the predictions for the semidilute regime, Eqs. (2a) and (2b), at the
same aspect ratios as in the experiments.

(by Weinberger [7], Mewis and Metzner [6], and Pittman and Bayram [8]) and from numerical
simulation (by Mackaplow and Shaqfeh [20]) for suspensions of thin and elongated fibers at lower
volume fractions (d � 10 μm, a ∼ 50–1200, and φ ∼ 5 × 10−4 to 0.01). All these measurements
are found to agree, in trend and within a factor 2, with the dilute regime prediction of Batchelor,
Eq. (1), assuming that the fibers do not interact and are aligned with the jet axis [21].

By contrast, the values measured at high volume fractions (φ � 0.08) for a = 10.8 ± 1.8 are
found to deviate from the dilute regime prediction and to increase much more strongly than linearly
with φ. This deviation occurs for values of εQ(ε)a2φ typically above 10, for which the viscosity
for the more slender fibers is still following the dilute regime prediction. This indicates that the
nonlinearity with volume fraction is not controlled by a2φ only (or even less by aφ). The departure
from linearity is more evidenced in Fig. 3(b) by plotting the specific effective viscosity normalized
by εQ(ε)a2 as a function of φ. The semidilute models assuming sole hydrodynamics interactions,
Eqs. (2a) and (2b), are predicting a much weaker deviation from linearity than that observed in the
experiment and thus both fail to capture the experimental behavior at large φ.

B. Capillary breakup

We now turn to the capillary bridge experiments, with the aim of comparing the dynamics of
pinching with that of jet stretching. Figures 4(b) and 4(c) show the typical time evolution of the
capillary thinning observed for a suspension with φ = 0.05 and 0.24, respectively, using the smallest
fibers (a = 10.8 ± 1.8, d = 28.9 ± 1.2 μm). As a reference, the dynamics in the absence of fibers
(φ = 0) is also presented in panel (a). In the three cases, the bridge is shown for the same values
of its minimal diameter (hmin = 2.5, 1, 0.5, and 0.1 mm) and the corresponding times to breakup
are indicated in the images (note that the suspending liquid is ≈23 times less viscous for φ = 0.24
than for φ = 0 and 0.05). For φ = 0.05, the bridge shape is found to remain similar to that of
the Newtonian case until the neck has decreased to a few fiber widths. By contrast, for φ = 0.24,
the bridge is found to be distorted at all times, showing a nonaxisymmetric shape with irregular
protrusion, even when hmin � l (≈290 μm). As illustrated in Fig. 4(d), this irregularity in the shape
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(a)

7.93 s 1.19 s 0.39 s 0.02 s

2 mm

(d)

(e)

φ =

|ḣmin|h=href t / href

1

(c)

1.54 s 0.54 s 0.26 s 0.06 s

3.48 s 1.20 s 0.48 s 0.05 s

(g)(f)

l/href

FIG. 4. (a)–(c) Typical breakup dynamics of the capillary bridge. From top to bottom, φ = 0, 0.05, and 0.24
(a = 10.8 ± 1.8, d = 28.9 ± 1.2μm, η0 = 3.05 Pa s [for (a) and (b)] and 0.13 Pa s [for (c)]). The tags indicate
the time, tbreak − t , remaining before breakup (from left to right, hmin = 2.5, 1, 0.5, and 0.1 mm, respectively).
(d) Variability in the bridge shape for four different breakup events with φ = 0.24 (hmin ≈ 0.5 mm). (e) Time
evolution of the minimal diameter for 16 repetitions of the experiment with φ = 0.24 (the time origin is taken
when hmin = href = 2.5 mm). The large filled symbols and the envelope show, respectively, the average and the
standard deviation of t at a given value of hmin. The small filled symbols correspond to the images shown in
(c) and (d). (f) Time evolution of the bridge minimal diameter for different particle volume fractions [average
and standard deviation over 16 repetitions of the breakup, same value of a and d as in (a)–(d)]. Inset: Same
data as a function of the time made dimensionless with the initial thinning rate |ḣmin|hmin=href /href (the rate
is measured between hmin = href and hmin = 0.9href ). (g) Relative thinning rate as inferred from the mean
breakup time tbreak and from the mean initial thinning rate |ḣmin|hmin=href /href [same data for ηe/η0 and ηs/η0

as in Fig. 2(a)].

at high volume fraction (φ = 0.24) is not deterministic. The bridge shape observed for the same
value of hmin (= 0.5 mm) for four realizations of the experiment under the same conditions is found
to differ strongly between each realization. This large variability in the shape results in a large
variability in the temporal dynamics. Figure 4(e) compares the time evolution of hmin from the same
reference diameter, hmin = href = 2.5 mm, to the pinch-off instant (hmin = 0) for 16 breakup events.
Both the whole duration of the breakup, which varies over a factor close to 3, and the shape of the
thinning curve show a large variability around the average dynamics indicated by the large symbols.
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TABLE III. Extensional effective viscosities obtained with the capillary bridge setup (a = 10.8 ± 1.8, d =
28.9 ± 1.2 μm). The values for the breakup time and initial thinning rate are averaged over 16 measurements
and the value after the ± symbol indicates the standard deviation.

φ/100 η0 (Pa s) tbreak/tbreak,φ=0 ḣmin,φ=0/ḣmin

1.5 3.05 1.16 ± 0.03 1.18 ± 0.03
2 3.05 1.13 ± 0.04 1.13 ± 0.04
5.1 3.05 2.47 ± 0.14 2.31 ± 0.09
8.7 3.05 3.63 ± 0.15 3.44 ± 0.10
15 3.05 8.4 ± 0.5 8.7 ± 0.6
19.8 3.05 28.5 ± 2.7 34.5 ± 3.8
24 0.13 155 ± 44 291 ± 99

The influence of the particle volume fraction is summarized in Fig. 4(f), which compares the
thinning dynamics obtained for φ ranging from 0 (Newtonian reference case) to 0.24. In the inset
the time is nondimensionalized with the averaged initial thinning rate, ḣmin|hmin=href , estimated around
hmin = href . This scale emphasizes the influence of the particle volume fraction on the variability of
the dynamics. Relative to the mean time (symbols), the standard deviation of t at a given value of
hmin (shaded envelop) increases continuously with increasing φ. The inset in Fig. 4(f) also evidences
that the shape of the thinning law is φ-dependent. The larger the volume fraction becomes the more
the thinning rate increases with decreasing hmin. This relative acceleration is qualitatively similar
to the behavior observed for spherical particles [13,17,22–24]. However, its interpretation in the
present case is much more delicate because for a suspension of fibers at high φ even the initial
shape of the bridge (for hmin � href ) is found to be influenced by the particles, hence preventing
direct comparisons.

Besides these differences in the shape of the thinning law, the most conspicuous influence of
the fibers is to slow down the pinching dynamics. As shown in the main graph of Fig. 4(f), where
time is made dimensionless by using the typical pinching duration for φ = 0, η0href/σ , the whole
pinching duration increases continuously with increasing φ and is found to be typically 102 times
longer at φ = 0.24 than at φ = 0. The magnitude of this slowing of the dynamics is compared
to the relative viscosity determined with the jet experiments in Fig. 4(g), where both the relative
breakup time, tbreak/tbreak,φ=0, and the inverse of the relative initial thinning rate, ḣmin,φ=0/ḣmin, are
reported as a function of φ. These data are also provided in Table III. These ratios are found to
reflect quantitatively the extensional effective viscosity of the suspension, up to the largest volume
fraction at which the two experiments can be compared (φ = 0.20). This indicates that, in spite
of the nonuniformity of the flow and of the differences with a Newtonian effective dynamics that
have been mentioned above, the timescale of the pinching is well captured by the extensional bulk
effective viscosity.

IV. CONCLUSIONS

Our measurements of the extensional bulk effective viscosity for moderate aspect ratios of the
fibers and relatively high volume fractions (a ∼ 10 to 102 and φ up to 0.24) complement those
already available in the literature for more dilute suspensions of more slender fibers (a ∼ 102 to
103, φ ∼ 10−4 to 10−2 [6–8]). Except for the most concentrated suspensions (φ � 0.08, a ≈ 11),
all the measurements are close to the dilute regime prediction assuming noninteracting fibers aligned
with the strain direction. By contrast, for those most concentrated suspensions the specific viscosity,
ηe/η0 − 1, increases nonlinearly with φ and much more strongly than predicted by the semidilute
models assuming purely hydrodynamic long distance interactions. This suggests that lubrication,
contact interactions between the fibers, or intrinsic nonuniformities in the distribution of the fibers
need to be considered in this concentrated regime.
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Observation on the thinning of a capillary bridge (for a ≈ 11) reveals a significant departure
from the Newtonian effective dynamics at solid volume fractions ∼0.20 that are significantly lower
than the critical volume fraction reported in a pure shear flow, ∼0.45 [12], or the random packing
volume fraction reported for dry fibers, ∼0.40 [25]. This departure manifests in less slender bridge
shapes and in an acceleration of the thinning rate during the pinch-off (|ḧmin| > 0). For the most
concentrated suspensions, the departure is observed even when the size of the flow is still much
larger than the fiber length (hmin/l � 10), and is characterized by an important random feature
producing a large variability in the shape of the bridge and in its temporal thinning law. However, in
spite of these variabilities and of the nonuniformity and significant tridimensionality of the flow in
the bridge, the total duration of the pinching is found to be in good quantitative agreement with the
duration expected from a Newtonian effective dynamics limited by the extensional viscosity, ηe.

[1] G. Batchelor, The stress generated in a non-dilute suspension, J. Fluid Mech. 46, 813 (1971).
[2] E. Shaqfeh and G. Fredrickson, The hydrodynamic stress in a suspension of rods, Phys. Fluids A 2, 7

(1990).
[3] G. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech.

44, 419 (1970).
[4] J. M. Burgers, On the motion of small particles of elongated form suspended in a viscous liquid. Chap.

III of Second Report of Viscosity and Plasticity, Kon. Ned. Akad. Wet., Verhand. (Eerste Sectie) 16, 113
(1938).

[5] R. Cox, The motion of long slender bodies in a viscous fluid. Part 1. General theory, J. Fluid Mech. 44,
791 (1970).

[6] J. Mewis and A. Metzner, The rheological properties, J. Fluid Mech. 62, 593 (1974).
[7] C. Weinberger and J. Goddard, Extensional flow behavior of polymer solutions and particle suspensions

in a spinning motion, Int. J. Multiph. Flow 1, 465 (1974).
[8] J. Pittman and J. Bayram, Extensional flow of polydisperse fiber suspensions in free-falling liquid jets,

Int. J. Multiph. Flow 16, 545 (1990).
[9] J. Butler and B. Snook, Microstructural dynamics and rheology of suspensions of rigid fibers, Annu. Rev.

Fluid Mech. 50, 299 (2018).
[10] C. Petrie, The rheology of fibre suspensions, J. Non-Newt. Fluid Mech. 87, 369 (1999).
[11] R. Powell, Rheology of suspensions of rodlike particles, J. Stat. Phys. 62, 1073 (1991).
[12] F. Tapia, S. Shaikh, J. E. Butler, O. Pouliquen, and É. Guazzelli, Rheology of concentrated suspensions

of non-colloidal rigid fibres, J. Fluid Mech. 827, 725 (2017).
[13] J. Château and H. Lhuissier, Breakup of a particulate suspension jet, Phys. Rev. Fluids 4, 012001(R)

(2019).
[14] F. T. Trouton, On the coefficient of viscous traction and its relation to that of viscosity, Proc. R. Soc. Lond.

A 77, 426 (1906).
[15] D. Brown, A study of the behavior of a thin sheet of moving liquid, J. Fluid Mech. 10, 297 (1961).
[16] S. Palma and H. Lhuissier, Dip-coating with a particulate suspension, J. Fluid Mech. 869, R3 (2019).
[17] J. Château, É. Guazzelli, and H. Lhuissier, Pinch-off of a viscous suspension thread, J. Fluid Mech. 852,

178 (2018).
[18] Y. Young and M. Shelley, Stretch-Coil Transition and Transport of Fibers in Cellular Flows, Phys. Rev.

Lett. 99, 058303 (2007).
[19] G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A 102,

161 (1922).
[20] M. Mackaplow and E. Shaqfeh, A numerical study of the rheological properties of suspensions of rigid,

non-Brownian fibres, J. Fluid Mech. 329, 155 (1996).
[21] Note that the difference between the experimental values and the dilute regime prediction cannot be

attributed to the dispersion in the fiber dimensions. As shown in Table II, the effective value of the

044307-10

https://doi.org/10.1017/S0022112071000879
https://doi.org/10.1063/1.857683
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1017/S002211207000215X
https://doi.org/10.1017/S0022112074000826
https://doi.org/10.1016/0301-9322(74)90015-9
https://doi.org/10.1016/0301-9322(90)90081-S
https://doi.org/10.1146/annurev-fluid-122316-045144
https://doi.org/10.1016/S0377-0257(99)00069-5
https://doi.org/10.1007/BF01128178
https://doi.org/10.1017/jfm.2017.552
https://doi.org/10.1103/PhysRevFluids.4.012001
https://doi.org/10.1098/rspa.1906.0038
https://doi.org/10.1017/S002211206100024X
https://doi.org/10.1017/jfm.2019.267
https://doi.org/10.1017/jfm.2018.530
https://doi.org/10.1103/PhysRevLett.99.058303
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1017/S0022112096008889


EXTENSIONAL VISCOSITY AND THINNING OF A FIBER …

aspect ratio, aeff = √〈l3〉/〈ld2〉, obtained by weighting each fiber proportionally to its contribution to the
increase in viscosity in Eq. (1), is very close to the simple average of a = l/d used for the comparisons in
Fig. 3.

[22] C. Bonnoit, T. Bertrand, E. Clément, and A. Lindner, Accelerated drop detachment in granular suspen-
sions, Phys. Fluids 24, 043304 (2012).

[23] R. J. Furbank and J. F. Morris, An experimental study of particle effects on drop formation, Phys. Fluids
16, 1777 (2004).

[24] W. Mathues, C. McIlroy, O. G. Harlen, and C. Clasen, Capillary breakup of suspensions near pinch-off,
Phys. Fluids 27, 093301 (2015).

[25] O. Rahli, L. Tadrist, and R. Blanc, Experimental analysis of the porosity of randomly packed rigid fibers,
C. R. Acad. Sci., Ser. IIb 327, 725 (1999).

044307-11

https://doi.org/10.1063/1.4704801
https://doi.org/10.1063/1.1691034
https://doi.org/10.1063/1.4930011
https://doi.org/10.1016/S1287-4620(99)80127-6

